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ABSTRACT: New, highly stable tricyclic antitubercular ozonides 9 and 10 derived from artemisinin are reported in 39 and 9%
yields, respectively. The ozonide groups of 9 and 10 were found to be stable under strong basic and acidic conditions. The
absolute configuration of ozonides 9 was confirmed by X-ray crystallography. Ozonide 10 shows promising antitubercular activity
against M. tuberculosis Hy;Ra and M. tuberculosis Hy;Rv with MIC values of 0.39 and 3.12 ug/mL, respectively.

rtemisinin 1" is a sesqueterpene lactone endoperoxide and also exhibit significant antitubercular activity (Figure 2).'°
has a unique tetracyclic framework having the pharmaco- Thus, it can be speculated that these activities in artemisinin are
phoric 1,2,4-trioxane ring responsible for antimalarial activity.” due to the presence of the peroxide linkage.

In addition to providing a series of antimalarial drugs, such as
dihydroartemisinin 2, artemether 3, arteether 4, and artesunic
acid § (Figure 1), to combat multidrug-resistant malaria, the

Figure 1. Artemisinin 1 and its derivatives 2—S5.

discovery has also revealed that the malarial parasite can be Figure 2. Structures of peroxides having antimalarial and anti-
selectively killed by providing an additional oxidative stress in tubercular activity.

the form of a peroxide molecule.’

Apart from antimalarial activity, several other biological
activities, such as anti-infective,” antifungal,5 anticancer,’
antiproliferative,” antiinflamatory,” and antiarrhythmic’ activ-
ities, have also been reported in artemisinin derivatives.

Organic peroxides, such as 1,2-dioxolanes, endoperoxides,
and 1,2,4,5-tetraoxanes, possess antitubercular activity.” Re-
cently, the first example of mycobactin-artemisinin conjugate 6
has been shown to possess dual potency against tuberculosis
and malaria.”

In addition, mixed tetraoxanes 7a and 7b not only shown Received: August 8, 2015
promising antimalarial activity against P. falciparum in vitro but Published: October 2, 2015

For the last two decades, 1,2,4-trioxolane (ozonide) has been
identified as an important scaffold for drug discovery research
because ozonides are endowed with a wide range of biological

e egs 11 . . .
activities. Several naturally occurring and synthetic ozonides

. .1 1la—d . .1 1le
are known to possess antimalarial, antibacterial,
antischitosomal,'"’ and F. hepaticallg activities. In general,
ozonides are prepared via ozonolysis of olefins, but few
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instances are reported in the literature to prepare ozonides via
H,0, treatment on diketo compounds.'”

Earlier, we had emphasized the importance of tetracyclic
framework of artemisinin, which clearly indicates its intrinsic
antimalarial activity.'> To better understand the importance of
each group and the stereochemistry of each chiral center and to
further study the groups responsible for antimalarial activity in
artemisinin, we planned to replace the 1,2,4-trioxane moiety of
artemisinin with an ozonide moiety and then study its effect on
antimalarial activity. Herein, we report new ozonide chemistry
in artemisinin, albeit with high cost. For the first time, we
report the synthesis of tricyclic antitubercular ozonides. We also
report the synthesis of 1,2,4-trioxolane alcohols.

To test these ideas, we treated compound 8, easily accessible
in a single step and in good yield from artemisinin,"* with 30%
H,0,/2 N HCI using a mixture of DCM and CH;CN as
solvents to furnish a diastereomeric mixture of ozonides 9 and
10.”° Interestingly, tetraoxane 8a was not detected (Scheme
1)."'° After column chromatography, the structures of these

Scheme 1. Synthesis of Diastereomeric Ozonides 9 and 10
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ozonides were characterized by 'H NMR, B¥C NMR, MASS,
and elemental analysis. Although the synthesis of ozonides
structurally related to artemisinin has been reported previous-
ly,""* this is the first example of conversion of artemisinin to its
tricyclic ozonide analogues.

The high stability of ozonides 9 and 10 is confirmed by their
formation under 2 N HCI conditions. Moreover, these
ozonides can withstand temperatures up to 65 °C.

Reduction of ozonides 9 and 10 with LiAlH, furnished
ozonide alcohols 11 and 12, respectively, which also confirms
high stability of these tricyclic ozonides toward strong basic
conditions (Scheme 1).

Ozonide 9 on reaction with Zn/AcOH furnished diketoester
15, which on treatment with H,0,/HCI furnished the same
mixture of diastereomeric ozonides 9 and 10, thus confirming
that the two ozonides differ in stereochemistry only at carbons
linked with the peroxy group (Scheme 2).

Ozonides 9 and 10 on reaction with Ac,O/Et;N furnished
corresponding acetates 13 and 14, respectively, of which only
compound 13 furnished crystals that were sufficient to be
analyzed by X-ray crystallography.

The structure of ozonide 13 was confirmed by single crystal
X-ray diffraction analysis.'” The ORTEP view of the molecule
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Scheme 2. Stereochemical Assignment of Diastereomeric
Ozonides 9 and 10
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(at 30% probability) with atomic numbering is depicted in
Figure 3. The molecule consists of a fused tricyclic ring system
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Figure 3. ORTEP diagram (at 30% probability) of ozonide 13.

(two six-membered and one five-membered) having a peroxide
bridge. Both the six-membered rings exist in chair conformation
whereas the ozonide ring adopts an envelope conformation.

A probable mechanism for the formation of ozonides 9 and
10 from ketoester 8 via a—hPrdroxyhydroperoxide intermediate
16 is illustrated in Figure 4. 8
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Figure 4. Possible mechanism for the formation of ozonides 9 and 10.

A preliminary in vivo screening of ozonides 9 and 10 and
their derivatives 11—14 against multidrug-resistant P. yoelii
nigeriensis at a dose of 96 mg/kg X 4 days in Swiss mice was
assessed.'” These ozonides were found to be less active than 1
and 2 as antimalarials. This further confirms the importance of
1,2,4-trioxanes as pharmacophores for antimalarial activity and
also emphasizes the necessity of the tetracyclic ring system
present in artemisinin (Table 1).

Artemisinin possesses antitubercular activity;” thus, ozonides
9 and 10 were also evaluated for antitubercular activity against
avirulent strain M. Tuberculosis Hy,Ra (using MABA method)”!
and against virulent strain M. Tuberculosis Hy,Rv (using agar
Proportion Assay)”” at concentrations ranging from 0.39 to
12.5 pg/mL (Table 1). Of the two stereoisomers (9 and 10),
stereoisomer 10 showed antitubercular activity against M.
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Table 1. Antimalarial and Antitubercular Activity of
Ozonides 9 and 10

MABA MIC
in vivo antimalarial (ug/mL) agar microdilution
activity against P. against M. MIC (ug/mL)
yoelii nigeriensis tuberculosis against M.

compound (cured/treated) Hy,Ra tuberculosis Hy,Rv
9 0/5 12.5 inactive”
10 0/5 0.39 3.12
1 5/8
2 5/8
Rifampicin 0.1 0.20
Ethambutol nd® 2.0

“Inactive = >12.5. *Not done (nd).

Tuberculosis Hy;Ra and M. Tuberculosis H;,Rv with MIC values
of 0.39 and 3.12 pg/ml, respectively (Table 1).

In conclusion, our study uncovered tricyclic antitubercular
ozonides 9 and 10, which were prepared from the antimalarial
agent artemisinin. These ozonides were found to be chemically
stable under strong acidic and basic conditions. Most
importantly, these ozonides show good antitubercular activity
comparable to that of the clinically available antitubercular
drugs Rifampicin and Ethambutol in vitro. This finding opens a
new area in the chemotherapy of tuberculosis. The difference in
biological activity displayed by the two stereoisomers and
understanding the exact mechanism of action, importance of
stereochemistry of peroxide linkage, and their proper
structure—activity relationship will be reported elsewhere in
due course.
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